AI-Ce-Ni (Aluminum-Cerium-Nickel)

V. Raghavan

The early report on the phase equilibria of this ternary system by [1983Zar] presented partial isothermal sections at 800, 600, and 500 °C for Ce concentrations up to 33.3 at.%, depicting a number of ternary compounds. Recently, [2008Tan] reinvestigated the system at 800 °C and found two new ternary compounds of unknown structure. The solidification features near the Al corner were studied by [1996Bel].

Binary Systems

The Al-Ce phase diagram was recently reassessed thermodynamically by [2005Gao], using new experimental results as additional input. The intermediate phases in this system are: α Ce₃Al ($D0_{19}$, Ni₃Sn-type hexagonal), β Ce₃Al ($L1_2$, AuCu₃-type cubic), Ce₂Al (stable between 775 and

Phase	Composition, at.%	Pearson symbol	Space group	Prototype	Lattice parameter, nm
AlCeNi (τ_1)	36.4-34.1 Al	hP9	$P\bar{6}2m$	Fe ₂ P	<i>a</i> = 0.69927-0.69745
	33.0-32.7 Ce				c = 0.40276 - 0.40155
	30.6-33.2 Ni				
Al ₂ CeNi (τ ₂)	53.0-50.7 Al	oC16	Cmcm	Al ₂ CuMg	a = 0.40741 - 0.40774
	24.5-26.9 Ce				b = 1.09631 - 1.09750
	22.5-22.4 Ni				c = 0.69373 - 0.69442
$Al_5Ce_2Ni_5\;(\tau_3)$	41.7 Al				
	16.7 Ce				
	41.7 Ni				
Al ₃ CeNi ₂ (τ_4)	50.0 Al	hP6	P6/mmm	CaCu ₅	a = 0.528
	16.7 Ce				c = 0.404
	33.3 Ni				
Al ₄ CeNi (τ ₅)	66.7 Al	oC24	Cmcm	Al ₄ NiY	a = 0.4097
	16.7 Ce				b = 1.547
	16.7 Ni				c = 0.6643
Al ₅ CeNi ₂ (τ_6)	62.5 Al	<i>oI</i> 16	Immm	Al ₅ Ni ₂ Pr	a = 0.7030
	12.5 Ce				b = 0.9597
	25.0 Ni				c = 0.3999
Al ₇ CeNi ₂ (τ_7)	70 Al				
	10 Ce				
	20 Ni				
$Al_{23}Ce_4Ni_6\;(\tau_8)$	69.7 Al	mC66	C2/m	Al ₂₃ Y ₄ Ni ₆	a = 1.6042
	12.1 Ce				b = 0.4140
	18.2 Ni				c = 1.8380
					$\beta = 113.24^{\circ}$
$Al_{17}Ce_{40}Ni_{43}(\tau_9)$	17 Al	oI?	Immm	MoNi ₂ B ₂	a = 0.5331
	40 Ce				b = 0.8403
	43 Ni				c = 0.4241
AlCeNi ₄ (τ_{10})	16.7 Al	hP6	P6/mmm	CaCu ₅	a = 0.4943
	16.7 Ce				c = 0.4085
	66.7 Ni				
τ ₁₁	59.8 Al				
	12.1 Ce				
	28.1 Ni				
τ ₁₂	40.3 Al				
	30.4 Ce				
	29.3 Ni				

 Table 1
 Al-Ce-Ni crystal structure and lattice parameter data [2008Tan]

Fig. 1 Al-Ce-Ni isothermal section at 800 °C for Ce-lean alloys [2008Tan]

Fig. 2 Al-Ce-Ni liquidus projection near the Al corner [1996Bel]

648 °C; Co₂Si-type orthorhombic?), CeAl (orthorhombic), CeAl₂ (*C*15, MgCu₂-type cubic), αCeAl₃ (Ni₃Sn-type hexagonal), βCeAl₃ (hexagonal, stable between 1192 and 973 °C), CeAl₄ or βCe₃Al₁₁ (*D*1₃, Al₄ Ba-type tetragonal), and αCe₃Al₁₁ (αCe₃La₁₁-type orthorhombic). The Al-Ni phase diagram [1993Oka] shows five intermediate phases: NiAl₃ (*D*0₁₁, Fe₃C-type orthorhombic), Ni₂Al₃ (*D*5₁₃-type hexagonal), NiAl (*B*2, CsCl-type cubic, denoted β), Ni₅Al₃ (Ga₃Pt₅-type orthorhombic), and Ni₃Al (*L*1₂, AuCu₃-type cubic, denoted γ '). The Ce-Ni phase diagram [Massalski2] depicts the following binary compounds: Ce₇Ni₃ (*D*10₂, Fe₃Th₇-type hexagonal), CeNi (*B_f*, CrB-type orthorhombic), CeNi₂ (*C*15, MgCu₂-type cubic), CeNi₃ (hexagonal), Ce₂Ni₇ (hexagonal), and CeNi₅ (*D*2_d, CaCu₅-type hexagonal).

Ternary Compounds

A total of 12 ternary compounds are known in this system. The structural details of these are shown in Table 1 [2008Tan]. The ternary compounds AlCeNi (τ_1) and Al₂CeNi (τ_2) show a measurable homogeneity range and a corresponding variation in the lattice parameters, Table 1. The compounds Al₅Ce₂Ni₅ (τ_3), Al₃CeNi₂ (τ_4), Al₇CeNi₂ (τ_7), and Al₁₇Ce₄₀Ni₄₃ (τ_9) were not found by [2008Tan] at 800 °C. The compound τ_{10} is a solid solution based on the binary compound CeNi₅. The composition variation in the compounds Al₄CeNi (τ_5), Al₅CeNi₂ (τ_6), and Al₂₃Ce₄Ni₆ (τ_8) was found to be very small [2008Tan]. The compounds τ_{11} and τ_{12} were newly found by [2008Tan], but the crystal structures were not determined.

Ternary Phase Equilibria

With starting metals of 99.999% Al, 99.9% Ce, and 99.9% Ni, [2008Tan] arc-melted under Ar atm 34 ternary alloys with Ce content up to 33.3 at.%. The alloys were annealed at 800 °C for 20 days and quenched in water. The phase equilibria were studied by x-ray powder diffraction, optical and scanning electron microscopy and energy dispersive x-ray spectroscopy. The measured compositions of the identified phases were listed.

The isothermal section for Ce-lean alloys at 800 °C constructed by [2008Tan] is shown in Fig. 1. The ternary compounds τ_1 , τ_2 , τ_5 , τ_6 , τ_8 , τ_{11} , and τ_{12} are present. The binary phase CeNi₅ dissolves up to 55 at.% Al at constant Ce content (denoted τ_{10} by [2008Tan]). The lattice parameters vary nonlinearly from a = 0.4880 nm and c = 0.4013 nm at 0% Al to a = 0.53423 nm and c = 0.40344 nm at 55 at.% Al. The other Ce-Ni phases Ce₂Ni₇ and CeNi₃ dissolve 5.2 and 13.1 at.% Al. CeNi₂ shows no solubility for Al [2008Tan], in contrast to the solubility of 10 at.% reported by [1983Zar]. The Al-Ce compounds CeAl₂, Ce₃Al₁₁, α CeAl₃ and β CeAl₃ dissolve 5.5, 1.8, 0.6,

and 3.8 at.% Ni respectively. The Al-Ni phases dissolve very little Ce.

Very recently, [2009Tan] reported a second isothermal section for this system at 500 °C for compositions up to 33.3 at.% Ce. The ternary compounds τ_3 , τ_7 , τ_{10} , τ_{11} and τ_{12} are not present at 500 °C. A compound found at the composition Al₃₅Ce_{16.5}Ni_{48.5} was labeled as τ_9 by [2009Tan]. This composition is different from Al₁₇Ce₄₀Ni₄₃, which was labeled τ_9 by [2008Tan].

The solidification of Al-rich alloys was investigated by [1996Bel]. Starting with high purity metals, [1996Bel] melted in a resistance furnace a number of binary and ternary alloys with Ce and Ni contents up to 16 and 8 mass% respectively. The phase equilibria were studied with optical and scanning electron microscopy, electron probe microanalysis, and differential thermal analysis. The liquidus projection constructed by [1996Bel] near the Al corner is shown in Fig. 2. The solidification is through the ternary eutectic reaction E: $L \leftrightarrow (Al) + Ce_3Al_{11} + NiAl_3$ at 626 °C with the liquid composition at 12Ce-5Ni (mass%).

References

- **1983Zar:** O.S. Zarechnyuk, T.I. Yanson, and R.M. Rykhal, The Ce-Ni-Al System in the Range of 0-0.333 Atomic Fraction of Ce., *Metally.*, (4), p 192-193, in Russian; TR: *Russ. Metall.*, 1983, (4), p 154-156
- **1993Oka:** H. Okamoto, Al-Ni (Aluminum-Nickel), J. Phase Equilib., 1993, **14**(2), p 257-259
- 1996Bel: N.A. Belov and E.S. Naumova, Prospects for the Design of Structural Cast Eutectic Al-Ce-Ni Alloys, *Metally*, 1996, (6), p 146-152, in Russian; TR: *Russ. Metall.*, 1996, (6), p 130-136
- 2005Gao: M.C. Gao, N. Unlu, G.J. Shiflet, M. Mihalkovic, and M. Widom, Reassessment of Al-Ce and Al-Nd Binary Systems Supported by Critical Experiments and First-Principles Energy Calculations, *Metall. Mater. Trans. A*, 2005, 36, p 3269-3279
- 2008Tan: C. Tang, Y. Du, H.H. Xu, W. Xiong, L.J. Zhang, F. Zheng, and H.Y. Zhou, Experimental Investigation of the Al-Ce-Ni System at 800 °C, *Intermetallics*, 2008, 16, p 432-439
- 2009Tan: C. Tang, Y. Du, and H. Zhou, The Phase Equilibria of the Al-Ce-Ni System at 500 °C, J. Alloys Compd., 2009, 470, p 222-227